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LETTER TO THE EDITOR

Algebraic areas enclosed by 2D Brownian curves in random
media
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Abstract. We study closed Brownian trajectories when the Brownian particle is subjected to
a random potential. For a Poissonianδ repulsive potential, the enclosed algebraic area,A, is a
Gaussian variable that scales liket3/4 when t , the length of the curve, goes to infinity. This is
intermediate between the situations where the particle is allowed to wander (i) everywhere on the
plane (A ∼ t) and (ii) only on a bounded domain (A ∼ t1/2). For the Lloyd model, we show that
the probability distribution,P(A), is the same as in the absence of disorder. This surprising result
is related to some peculiarities of the Cauchy law.

In this letter, we will address the problem of the area,A, enclosed by the trajectory of a
Brownian particle when this particle is submitted to a random potential. Each Brownian curve
will be weighted by a factor exp(− ∫ t0 V (Er(τ )) dτ) where, in a first step, we choose forV
(λ > 0):

V (Er) = λ
∑
i

δ(Er − Eri). (1)

The locationsEri of the scattering centres are randomly distributed on the plane according
to a Poisson’s law with an average densityρ. Before computing the probability distribution,
P(A), averaged over the set of positions{Eri}, we recall some results that will be useful for our
work.

The study of the algebraic area,A, enclosed by a Brownian curve of lengtht traces
back to the pioneering work of Levy [1]. Considering a Brownian particle allowed to wander
everywhere on the plane, he got, forP(A), the result:

P(A) = π

2t

1

cosh2
(
πA
t

) (2)

where clearlyA scales liket .
In a path integral formulation, we can writeP(A) as:

P(A) = N
∫

dEr
∫
Er(0)=Er(t)=Er

DEr (τ )δ
(
A− 1

2

∫ t

0
r2θ̇ dτ

)
exp

(
−
∫ t

0

1
2 Ėr

2
(τ ) dτ

)
(3)

(N is a normalization constant).
Using the identityδ(x) = (1/2π) ∫ +∞

−∞ dB eiBx , (3) becomes

P(A) = N ′
∫ +∞

−∞
dBeiBA Tr(e−tH ) ≡ 1

2π

∫ +∞

−∞
dB eiBA

(
Z(B)

Z(0)

)
(4)
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whereH is the Landau Hamiltonian of a charged particle in a constant magnetic field:

H = 1

2

(
−∂2

r −
1

r
∂r +

1

r2

(
−i∂θ − Br

2

2

)2
)
. (5)

Equation (2) is recovered by computing the Landau partion function,Z(B), and performing
the Fourier transform according to (4).

The work of Levy has been extended in various directions [2, 3]. For instance, if we
consider a Brownian particle allowed to wander only on a bounded domain [3], in the asymptotic
regime(t → +∞, |A| → +∞), (4) narrows down to:

P(A) '
∫ +∞

−∞
dB eiBAe−tE0(B) (6)

whereE0(B) is the ground state energy ofH . Moreover, due to large fluctuations of the factor
eiBA, only smallB values will give significant contributions toP(A). So, it is enough to
computeE0(B) to lowest order inB by perturbation theory, with the result [3]:

E0(B) = E0(0) +CB2 (7)

(C is a positive constant depending on the geometry of the system and on the boundary
conditions). With (6), it is a simple matter to show thatA/

√
t is a Gaussian variable.

Now, we consider the computation ofP(A)when potential (1) is added. In the following,
we will stick to the approach developed by Friedberg and Luttinger in [4] where the Lifschitz
argument [5] appears in a transparent way.

In 2D and for a zero magnetic field, the average partition function per unit volume reads:

Z(B = 0) = 1

2πt

〈
exp

(
− ρ

∫
dEr (1− e−λ

∫ t
0 δ(Er(τ )−Er)dτ )

)〉
{C}

(8)

〈· · ·〉{C} stands for an average over all Brownian curvesC of lengtht .
Considering the limitt →∞, the authors of [4] have shown that:

Z(B = 0) = exp

(
− tE0(0)− ρS + ρ

∫
D

dEr e−λtψ
2
0 (Er)
)
≡ e−tQ (9)

whereE0(0) andψ0 are, respectively, the ground state energy and wavefunction for a free
particle on a discD of radiusb and areaS with Dirichlet boundary conditions. The exponent,
Q, in (9) is understood as minimized with respect tob.

From now on, we will drop the subleadingψ0 term. In those conditions, (9) clearly
represents the Lifschitz argument: the low-lying energy states are built in regions free of
scatterers.

Now, adding an uniformB field, the only change is a perturbation ofE0 that will, in turn,
induce a change inb whenQ in (9) is minimized.

UsingE0(0) = s2
1/2b

2,ψ0(r) = J0(s1r/b)/
√
N (s1 is the first zero of the first kind Bessel

functionJ0), we get:

E0(B) = E0(0) +CB2b2 + · · ·
with

C = 1

8Nb2

∫ b

0
r2J 2

0

( s1r
b

)
2πr dr =

(
1

4s4
1J

2
1 (s1)

)∫ s1

0
J 2

0 (x)x
3 dx (10)

b is obtained by:

∂

∂b

(
s2
1

2b2
+CB2b2 +

ρπb2

t

)
= 0. (11)
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Finally, we end up with the results:

Z(B) ∼ e−
B2σ2

2 (12)

P(A) = 1√
2πσ 2

e−
A2

2σ2 (13)

σ 2 ≡ 〈A2〉 = 2s1Ct
3/2(2πρ)−1/2 ≈ 0.0523t3/2ρ−1/2. (14)

A is a Gaussian variable that scales liket3/4, a situation intermediate between the cases
considered above: (i) whole plane allowed (A ∼ t), (ii) only a bounded domain allowed
(A ∼ t1/2).

Equation (14) does not depend onλ. This is actually the limitλ→∞. First corrections
to this expression are of orderλ−1/2 (they come out from theψ0 term in (9)). We have checked
(14) by numerical simulations on a lattice. The scattering centres being located at the vertices
of the lattice, the average over disorder is realized by weighting eachN -step random walkC
by a factor exp(−ρ∑i (1− e−λni )), ni being the number of timesC has visited sitei. When
λ → ∞, this factor reduces to exp(−ρk) with k the number of distinct sites visited byC.
The exponent can become very large becausek is of order ofN/ lnN . The width,〈A2〉1/2,
is plotted, in figure 1 (logscale), as a function ofN with ρ = 0.1. For each simulation point,
we have generated 20 000 random walks,N running from 100 to 6000. The straight line is
the theoretical calculation equation (14):〈A2〉1/2 = 0.407N3/4. The agreement is not perfect.
Nevertheless, the numerical data clearly exhibit the desired power-law behaviour.

As a remark, let us mention that, in a recent paper [6], Samokhin has computed the winding
angle distribution of a Brownian particle wandering in potential (1). Using replica trick and
instantons computations, he got, in the limitt →∞, for the distribution of the winding angle
θ around some prescribed point:

P(θ) ∼ 1

1 +x2
x = θ√

t

J1(s1)

πY0(s1)

√
2

πρ
. (15)

(The diffusion constant D of [6] has been taken equal to1
2, Y0 is a second kind Bessel function.)

Let us show briefly how this result can be recovered by perturbation theory.P(θ) is
computed in the same way asP(A) except that the uniform magnetic field has to be replaced
by a magnetic vortex of strengthφ located inO. It is well known that the perturbation inφ

Figure 1. The width of the area distribution, forρ = 0.1, as a function of the length of the random
walk (points: numerical simulations; full line: theory). Each point corresponds to 20 000 closed
random walks. (For further explanations, see text.)



L224 Letter to the Editor

is singular. Using directly the result of [7] (equation (23), diffusion constant equal to1
2), we

have:

E0(φ) = E0(0) +
|φ|

b2J 2
1 (s1)

+ · · · . (16)

Minimizing the quantity(E0(φ) + ρπb2/t) as before and taking the Fourier transform of
Z(φ), we finally arrive at (15) (with coefficients in complete agreement).

Now, we turn to the Lloyd model [8]. Consider a lattice where each site,j , carries a
potentialVj distributed according to a Cauchy law:

P1(Vj ) = 1

π

λ

λ2 + V 2
j

λ > 0 (17)

with the characteristic function:

〈eiµVj 〉 = e−λ|µ|. (18)

Moreover, potentials on different sites are statistically independent.
Now, suppose that a givenN -step random walk develops in this environment. It will

be weighted by a factor e−V (or coshV , owing to the fact thatP1, equation(17), is an even
function) whereV is the ‘total potential felt by this curve’:

V =
∑
i

niVi (19)

with ni the number of times this random walk has visited sitei(
∑

i ni = N).
Let us compute the probability distribution of the random variableV . From (17) we get:

P(X = niVi) = λ

πni

(
λ2 + ( X

ni
)2
) (20)

〈eiµX〉 = e−λni |µ|. (21)

Statistical independence of the potentials on different sites leads to:

〈eiµV 〉 =
∏
i

e−λni |µ| = e−λN |µ| (22)

P(V ) = λN

π((λN)2 + V 2)
. (23)

We remark that the probability distribution (23) depends only on the lengthN of the curve
but not on the set of details{ni}. Recurrence properties do not play any role in that game and
the Lloyd potential will not discriminate curves with different shapes. So, we expect, for the
properties of such Brownian curves, the same result as when disorder is absent.

Let us check this fact forP(A). We will use the expression quoted in [9] forρ(E), the
average density of states when aB field is added to the Lloyd potential:

ρ(E) = |B|
2π2

∞∑
n=0

λ

(E − En)2 + λ2
(24)

with En = (n + 1
2)|B|; ρ(E)→λ→0 (|B|/2π)(

∑
n>0 δ(E − En)) i.e. the Landau spectrum.

We get, for the partition function (a convergence factor is used):

Z(B) = lim
ε→0+

|B|
2π2

+∞∑
n=0

∫ +∞

−∞
e−tE

λe−ε(E−En)
2

(E − En)2 + λ2
dE = B

sinh(Bt2 )
F (t, λ). (25)
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F(t, λ) depends on disorder but not on theB field. This leads to

Z(B)

Z(0)
=

Bt
2

sinhBt
2

. (26)

Fourier transforming, we are left with (2), i.e. the disorder-free probability distributionP(A).
As a final remark, we could also consider more general probability distributions than (17)

for the site potential. For instance, replacing (18) by the characteristic function of Levy’s law:

〈eiµVj 〉 = e−λ|µ|
α

0< α 6 2 (27)

(α = 2 is Gauss,α = 1 is Cauchy, i.e. Lloyd model) we get forV , defined in equation (19):

〈eiµV 〉 = e−λ(
∑

i n
α
i )|µ|α . (28)

Whenα 6= 1, this characteristic function depends on the details of the curve through the
quantityY ≡ ∑

i n
α
i . The weight of curves with largeY values will be increased. This

happens for compact curves whenα > 1 and for swollen curves whenα < 1 (α = 1 is
critical). We are aware that caseα < 1 deserves further investigation: in particular, we think
that it could represent a way to access to properties of self-avoiding random walks [10].

I acknowledge Dr C Texier and Professor A Comtet for stimulating discussions and also for
drawing my attention to [6].
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